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A second-order accurate scheme for the integration in time of the conservation laws of 
compressible fluid dynamics is presented. Two related versions are proposed, one Lagrangian 
and the second direct Eulerian. They both share the common ingredient which is a full 
analytic solution for the time derivatives of flow quantities at a jump discontinuity, assuming 
initial nonvanishing slopes on both sides. While this solution is an extension of the solution to 
the classical Riemann problem, the resulting schemes are second-order extensions of 
Godunov’s methods. In both cases, they are very simple to implement in computer codes. 
Several numerical examples are shown, where the only additional mechanism is a simple 
monotonicity algorithm. 

1. INTRODUCTION 

Consider the equations of an unsteady inviscid compressible flow in one space 
dimension written in conservation form, 

(1.1) 

where u, p, e are velocity, specific density, and specific internal energy, respectively, 
and p = p(e, p) is the pressure. 
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2 BEN-ARTZI AND FALCOVITZ 

Transforming to the Lagrangian coordinate & = p dx, Eq. (1.1) takes the form, 

vt + Y(V), = 0, 

v(JJ ytvqJ (ls2) 

It is the purpose of this paper to present schemes of second-order accuracy for the 
initial value problems associated with either (1.1) or (1.2). In both cases our schemes 
are direct extensions of Godunov’s well-known first-order method [7]. 

To illustrate our method let us consider first a single conservation law (f convex), 

w, + f(w), = 0. (1.3) 

As is customary in finite difference techniques, we use equally spaced grid points 
xi = iAx and advance the solution by a fixed time increment At. Setting 

Xitl/2=~(Xi+Xi+l) we define “cell i” as the interval (xi _ ,,>, xi + i,J and let WY be 
the average value of w over cell i at time t, = n At. Suppose first that w is taken as 
piecewise constant at t,, namely, constant in each cell i, with “jump discontinuities” 
at xi+ I/2. As is well known, such an initial discontinuity gives rise to a solution of 
(1.3) which is either a shock or a centered rarefaction wave. As long as interaction 
with neighboring waves does not occur (thus limiting At) constant values of w are 
propagated along straight lines emanating from the point of discontinuity. Denoting 
by w;++,‘/ = WY+ 1,2 the value along x = xi+ ,,2 (in case of a stationary shock take the 
appropriate one-sided value), one obtains a difference scheme for (1.3), 

(1.4) 

Suppose next that w is discretized not as a piecewise constant function but rather a 
piecewise linear function, so that in each cell i a constant value (~w/I~x); is assumed 
along with WY. The difference equation (1.4) may still be used, provided the jump 
discontinuity is resolved and a suitable value f(~)~+,,~ nt “2 is obtained. If second-order 
accuracy is desired, this value must be determined within O(At2) or otherwise stated, 
we must have 

fwr::l,2 =f(w>r+1/2 
+ q ($f(w)) I+ ,,2' 

(1.5) 

Here fWl+ 1 /2 is the instantaneous value of f(w) immediately after resolving the 
discontinuity, obtained as the solution of the previous case (constant values on both 
sides) at x=x. 1+1/2. The corresponding constant values are naturally 
WY + (Ax/2)(&v/~Yx)~ and wl+ 1 - (Ax/~)(~w/~x)~+ 1. It remains to consider the time 
derivative in (1.5), which reflects the nonuniformity of data on both sides. In the 
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FIG. I. Resolution of a discontinuity for a single conservation law. (a) nonsonic case, (b) sonic 
case. 

present case it is easy to compute. Indeed, Fig. 1 displays the only two possibilities. 
In Fig. la a wave (either a shock or a rarefaction) propagates to the right, leaving the 
line x = xi+ ,,2 in a region where w is smooth, so that from (1.3) we get, 

(1.6) 

In Fig. lb the line x = xi+ ,,* is contained in a centered rarefaction wave. Later on we 
refer to this case as the sonic case and realize that in the fluid dynamical context it is 
the most difficult case. However, in the present case we are fortunate since, regardless 
of the distribution of w on both sides the characteristics are straight lines carrying 
constant values of w, hence, (af(w)/at)l+ ,,2 = 0 (which means in numerical terms 
that at sonic points the scheme is first order). 

We have discussed Eq. (1.3) at some length since in principle our schemes for 
(1. l), (1.2) are precisely analogous to (1.4), where the fluxes halfway in time are 
evaluated by an equivalent of (1.5). This naturally leads to consideration of the terms 
in the right-hand side of (1.5) in the case of a system. 

The classical Riemann problem (RP) is 15, Sect. 801: 
Given two constant states U, ,Jnd a solution of the initial value problem (1.1) so 

that U(x, 0) = U, for fx > 0. 
Let us recall briefly the main features of the solution. Generally speaking, the jump 

discontinuity breaks up into a contact discontinuity which separates two waves, each 
of which may be either a shock or a rarefaction. The flow field between the waves is 
constant and the entire solution is self-similar in the sense that all quantities are 
functions of x/t only. We shall find it convenient in what follows to denote this 
solution by R(x/t; U,, U-). 

As was the case with the single conservation law, we realize that in order to 
achieve second-order accuracy one has to deal with the generalized Riemann problem 
(GRP) formulated as follows: 

Given two linearly distributed states U,(x), find a solution of the initial value 
problem (1.1) such that U(x, 0) = U,(x), for fx > 0. 

Of course in this case we do not expect a simple “global” solution, but rather a 
“good local approximation” in terms to be specified later. Our basic hypothesis is the 
following: 
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Define the “associated RP” as the Riemann problem with constant initial states 
given by U, = lim,,,, U,(X). Then locally, the wave pattern for the GRP is the 
same as that of the “associated RP,” meaning that if a solution of one problem 
involves a shock propagating to the left then so does the other, etc. Furthermore, the 
two solutions converge to the same values at the point of singularity. Symbolically, if 
U(x, t) is the solution to the GRP, 

fi; U(x, t) = R(p; U,, K) along 3 = p = const. (1.7) + 

Observe, however, that some features of the solution of the RP are lost in the case of 
the GRP, even locally. Thus, the solution is no longer self-similar, characteristics are 
not straight lines, and centered rarefaction waves are not necessarily isentropic. 

Let us now turn back to the problem of associating second-order accurate 
difference schemes with (l.l), (1.2). Following the same line of thought leading to 
(1.5) we conclude that what is needed is the time derivative &P(U)/& (or, for (1.2) 
aY(Y)/at) at the singularity, for a solution of the GRP. 

The main building block in our scheme is an analytic derivation of the above time 
derivatives, both in the Eulerian and Lagrangian frameworks. In the process of 
achieving this goal we give a full acount of the behavior (to within O(dt*)) of the 
solution to the GRP and, in particular, a detailed resolution of the nonisentropic 
rarefaction fans. It turns out that the entire solution can be expressed in closed form 
for a y-law equation-of-state and involves only simple integrations in the most general 
case. 

Once the solution to the GRP is established, the analogues of (1.4), (1.5) are set 
up. The resulting schemes are simple and straightforward. In particular, let us stress 
the following points: 

(a) A standard Riemann problem is solved once per cell boundary per time 
step. All subsequent “programming decisions” are made solely on the basis of this 
solution. 

(b) A “plug-in” procedure, using the explicit analytic solution, is used in order 
to compute time derivatives of flow quantities. Cell averages are then advanced 
conservatively and slopes are updated by differencing new values at cell boundaries. 

(c) No accessory technique is used except for a simple monotonicity 
algorithm. In particular, no other dissipative mechanism is incorporated. 

The paper is organized as follows. In Section 2 we outline the basic steps needed in 
the implementation of the present scheme. Section 3 summarizes the notation and 
conventions used throughout the paper. The analytic resolution of a centered 
rarefaction wave is discussed in Section 4. Our method is based on a “propagation of 
singularities” argument [6, Sect. V. 11, that is, the observation that along a charac- 
teristic curve the jump in the highest order transversal derivative satisfies an ordinary 
differential equation. In our case, the characteristic curve shrinks to a point at the 
singularity. In Section 5 we carry out the computation of the time derivatives of the 
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pressure and velocity along the contact discontinuity (note that they are continuous 
across the discontinuity). Looking at Eq. (1.2) we see that these derivatives are all we 
need for the time derivative of the flux vector in the Lagrangian frame. Thus, 
Section 6 concludes the discussion of our Lagrangian scheme. It turns out that this 
scheme is closely related to the one proposed by van Leer in [ I 11, which seems to 
have initiated the interest in second-order Godunov methods. In Appendix A we 
prove that van Leer’s equations are second-order approximations to the analytic 
solution, and in Appendix C we give some more details needed in the implementation 
of the Lagrangian scheme. The Eulerian scheme is discussed in Section 7. Essentially, 
it shares many common features with the Lagrangian case, except for the appearance 
of the sonic case, that is, when the grid line x = xi+ ,,,* is contained in a rarefaction 
fan. The characteristics emanating from the singularity are not straight lines and the 
grid line intersects every one of them nontangentially when expressed in characteristic 
coordinates. The evaluation of the time derivative in this case plays an important role 
in the above-mentioned analytic solution. While the results are given in Section 7. 
some proofs are relegated to Appendix B, and some additional details are given in 
Appendix D. Incidentally, in dealing with the Eulerian sonic case we use the fact that 
in the solution of the “associated RP” the flux is stationary (see (7.16)). This 
simplifies the computation considerably. Recently, a number of direct Eulerian 
second-order “upstream” methods were proposed by Colella [ 2 ], Colella-Woodward 
13 ], and Harten [ 8, 9 ]. They all differ from ours in that they do not handle directly 
time derivatives at the singularity. The concluding Section 8 is devoted to some 
numerical examples. We discuss (a) Sod’s example ] lo] in both Lagrangian and 
Eulerian frameworks, (b) an almost stationary very strong shock in Eulerian coor- 
dinates ] 3 ]. (c) two interacting blast waves [4 ]. 

2. OUTLINE OF THE NUMERICAL SCHEME 

Figure 2 displays a typical distribution of a flow variable at any given time t,. As 
in the previous section, cell midpoints are labeled by integral values i, whereas the 
half-integer index i + 4 is used for cell boundaries. We denote by Q any one of the 

FIG. 2. Typical distribution of flow variables in cells. 
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flow variables and use subscripts to indicate spatial location and superscripts for 
time. Thus Q;, Ql,‘,::’ stand for the values of Q at (idx, ndt), ((i + i) Ax, (n + +) At), 
the first being the average in cell i, while the second is the cell boundary value 
averaged in time. Obviously, when dealing with Eq. (1.2) Ax is replaced by A& aQ/dx 
by aQ/a& etc. We denote by (AQ); the variation of Q in cell i. The (constant) slope 
of Q in that cell is obtained as (aQ/ax)l = (I/Ax)(AQ);. As was explained in 
Section 1, the main ingredient of the scheme is the computation (via the solution of 
the GRP) of (aQ/at)~+,,, , the instantaneous rate of change of Q, following the 
resolution of the jump discontinuity. 

Our strategy for solving (l.l), (1.2) numerically may now be summarized as 
follows (we formulate in terms of (1.1)). 

Step A. Define boundary values at i + 4 by 

u, = ur+I/z*l/z F wJ)1,l,2,,,2’ (2.1) 

Use the solution of the RP (see Sect. 1) in order to define 

v+ 1/2 = R(0; U, , Up). (2.2) 

Observe that the line x = xi+ ,,2 may represent a discontinuity for the RP (in 
particular r = &+ ,,2 is always a contact discontinuity) in which case Ul+ ,,2 is 
double-valued. In all cases the flux is continuous. 

Step B. Using the given slopes (AU);, (AU);, I, in the analytic solution of the 
GRP, compute (lW/at)~+ ,,2 and in particular (iW(U)/at)r+ ,,2. 

Step C. Set 

(2.3) 

Step D. To update slopes of Q = p, p, u, use the following procedure, 

(with obvious care when Ql,‘:,, is double-valued). These slopes are now modified by 
a monotonicity algorithm which secures that they vanish at extremal points of the 
(average) Q distribution and that in monotonic distributions, for every i, the cell- 
boundary values Qy?;,2, Ql,‘;,, are in line with the values Ql?:, Qy”, Ql,‘,’ (see 
[I I] for details). 
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There is an extensive discussion in the literature of algorithms for the numerical 
implementation of Step A, that is, finding an “optimal Riemann solver” (see [ 1, 10, 
111). We shall, therefore, omit the details here. The solution of the RP involves, in 
general, two waves separated by a contact dicontinuity. As was explained in the 
Introduction, our basic hypothesis in setting up the initial conditions for Step B is 
that the nature of the wave pattern is that obtained in R(.; U, , U_). This hypothesis 
is applicable only in the immediate neighborhood of the singularity and has no 
further quantitative implications on the GRP solution except for (1.7). In particular, 
characteristics and shock trajectories are curvilinear and carry nonuniform values of 
the flow variables. 

Once Step B is taken care of, the remaining two steps are straightforward and we 
shall not discuss them in detail. Thus, the rest of the paper is devoted to carrying out 
the analysis required in Step B, both in the Lagrangian and Eulerian frameworks. 
Since the indices (i, n) are now fixed, we suppress them in the sequel. For notational 
convenience we take x = [ = t = 0 at the point of singularity and refer to the values 
U, , Up (see (2.1)) as the “right” and “left” values, respectively, and denoted U,, U,. 
A similar convention is employed for the slopes on both sides. For the reader’s 
convenience the simplified notation to be used henceforth is listed in Section 3. 

3. BASIC NOTATIONS 

In addition to the basic flow variables introduced in Section 1 we shall also make 
use of the speed of sound c and the “Lagrangian” speed of sound g =pc. Our 
analysis will be carried out in terms of a general equation-of-state. However, the 
results are particularly simple when applied to the y-law equation, namely, 

P= (Y- l)pe, y> 1. (3.1) 

We shall always write down the explicit form of the formulae for this special case. 
Following van Leer’s convention, we shall add the label y to the numbers of those 
equations which are specialized to the y-law case. 

The Lagrangian coordinate c is defined by d<= p & and we assume that the 
discontinuity is located at x = < = 0, t = 0. The subsequent flow (for the GRP) is 
displayed in Fig. 3, which uses the (r, t) plane. It is assumed that a centered 
rarefaction wave (CRW) propagates to the left and a shock travels to the right. The 
line <= 0 is a contract discontinuity. As before, we denote by Q(& t) any one of the 
flow variables. 

The notations to be used in the sequel are listed in Table I. We use the setup of 
Eq. (1.2). The analogous notations for (1.1) should be clear. (See also Fig. 3.). 

Remark. Note carefully the distinction between the various groups of quantities. 

Qr 3 42,) @Q/W,, @Q/X), 
analogously to (2.1)). 

are the given initial data (V,, V, correspond to I’, 



k = 4 

k = 6 

FIG. 3. Wave pattern and related quantities (used in Table I, Sect. 3) for the resolution of a discon 
tinuity in Lagrangian coordinates. Note the partition into zones k = 1 to 6, where the waves constitute 
zones k = 2 and 5. 

TABLE I 

Notations 

Symbol Definition 

lim Q(<, 0) as < --* Ok 

Constant slopes for *r > 0 

Solution of the RP 

R(‘k V,, V,) 
Right and left values in case Q discontinuous across 

(t=O),Q=~,c,g=pc 

$ Q(& t) along 5 = 0 at t = 0+ 

* 
for discontinuous Q 

lim lim 
326 t) , lim lim aQ(C t) 

t+o+ *PO+ 2 1-o+ po- x 

,im &?(5> t) 
1-b at ,=o 
lim aQ(c t) 
1-o+ at ,=" 

R(0; U,, U,) (only in Sect 7) 

4 Q(x, t) along x = 0 at t = 0+ (only in Sect. 7) 
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Q*, Q,*, QT result from the solution of the Riemann problem, R(.; I’,., l’,), in 
Lagrangian coordinates. 

@Q/at>*, (~QlW? (aQ/X>,* result from the solution of the generalized 
Riemann problem (GRP). 

(aQ/at), 3 (aQ/Wr re P resent limits of time derivatives taken ahead of the waves 
and can therefore be expressed by initial spatial derivatives in view of (1.2). 

Q,, (aQ/&), apply to the Eulerian case only (Sect. 7). They may be double- 
valued if x = 0 is a line of discontinuity for the RP. 

4. RESOLUTION OF A CENTERED RAREFACTION WAVE (CRW) 

In this section we deal with the most important feature of the solution of the GRP, 
namely, the resolution of the nonisentropic CRW. We assume that (see Fig. 3) the 
CRW propagates to the left and work in the (<, t) plane. As shown in Fig. 3, we 
introduce some characteristic notation. Let r* be the characteristic families of (1.2) 
corresponding to the eigenvalues fg = f pc. In the RP the f -, Tt curves are, respec- 
tively, straight lines and hyperbolas [5, Sect. 471. The slopes of the r- lines extend 
from -g, at the head to -gF at the tail of the rarefaction. We can therefore 
parametrize the CRW by characteristic coordinates (a,p) such that 

Geometrically, p is the slope of the r--line normalized so that p = 1 at the head and 
extending down to p* = gT/g, < 1. The coordinate a is the 4 coordinate of the inter- 
section of the Z-+-curve with the head characteristic p= 1. Inverting the relations 
(4.1) yields 

< = ap”*, f = -g,- lap- ‘!2. (4.2) 

Passing to the GRP both r*-families are distorted. We retain our definition of 
(a,/?) as parameters along (r-, r’) curves, respectively, interpreting p as the 
normalized slope as f + 0, a as the <-coordinate of the intersection with /3 = 1. The 
amount of slope distortion of the characteristics is obviously O(a), hence, the point of 
intersection of any particular T+ curve with the curve /3= 1 is removed by O(a*) 

from the corresponding point in the RP. It is then geometrically evident (and is easily 
established analytically in view of (1.7) and the characteristic relations) that a</aa, 
at/da along r- curves tend to the same values (as a --t 0) as implied by (4.2). Hence, 
in the GRP, 

t = a/3”* + &(a, /?)a*, f = -g,e1ap-‘i2 + q(a, /?)a*, (4.3) 

where &(a,/?), v(a,P) are smooth functions in [-a,, 0] x [PC, l] for some a,, > 0. 
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(The values of e(O,@, ~(0, fi) play an important role in the sonic case, see 
Appendix B.) Note that the slopes of r- curves at the singularity coincide with those 
of the associated RP by (1.7). For any flow variable Q we let Q(a,P) be its represen- 
tation in characteristic coordinates throughout the CRW. In terms of these coor- 
dinates Q is well behaved and smooth up to the singularity a = 0. Starting with the 
velocity U, we have 

THEOREM 4.1. Let a(J) = (&/&f)(O,p), p* ,</? < 1. Then a(P) satisfies a 
relation of the form 

a’@) + H(p) = 0, PE I/J*, 113 (4.4) 

where H(P) is a function that can be explicitly determined from the equation of state 
and the initial conditions ahead of the rurefuction. If the entropy ahead of the 
rarefaction is uniform HCj3) = 0. 

Equation (4.4) is supplemented by the condition 

(4.5) 

For a y-law equation of state we get 

H(J)= 1% ($j,- ($i,l .p,(l: 1)p(1’2)-(2’O-+I,)’ (4.6), 

so that in this case, 

a@) = a( 1) + 2 
&PY - 1) 

~cl($j,/+!-(!fj,J * (p1)‘Wf’) - 1’). (4.7,) 

ProoJ: The characteristic relations along r* are expressed by 

&l 1 dP o ----.--=. 
aa g aa 

(4.8) 

Differentiate the first equation with respect to cz, the second with respect to ,f?, 
eliminate p, and set a = 0 to obtain 

2g(O, P> a’V> + 
&(OY P> 

@ 
@) + WA PI NO, PI = 0 

aa w * 
(4.9) 

Since the CRW is nonisentropic, it is impossible to compute g, merely from p,. SO 
to eliminate g, we proceed as follows: Given a state (g,, p,,) let 

g=G(g,,p,,p) (4.10) 
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be the isentropic curve through (g,, p,). For a point (a, p), a < 0, let <(a, b) be its 6 
coordinate as expressed by (4.3), and denote by 

Po(“, P> = PI + ($) , . 8% Ph 

g,(a, PI = g, + ($) , . @a, 8, 
(4.11) 

the initial values of p, g at &a,/?). Since the flow is isentropic along the streamline 
{ = const., we conclude from (4. IO), (4.11) that 

da, P> = G(g,h P>, da, B), da, PII (4.12) 

Differentiating this equation with respect to a and setting a = 0 we have 

= A Co) . P”’ + g(O, P) G,( g, 5 P/ 3 ~(0, P)> a@>, (4.13) 

where we have denoted by A(P) the term in square brackets and made use of (4.3) in 
the first term and (4.8) in the second term. Inserting this expression in (4.9) and using 
(4.8) again, we see that the coefficient of a(P) is given by 

But E(/3) = 0. Indeed, by (1.7) ~(0, p), g(O,/I), p* G/3 < 1. are obtained in the 
solution of the RP for V,, V, and, therefore, represent isentropic states, namely, 
g(0, /I) = G(g,, p,, ~(0, /I)). Differentiating this equality we get E@) = 0. Thus, 
Eq. (4.4) is established with 

If the entropy ahead of the rarefaction is uniform then all states p,,(a, /3), g,(a, /3) are 
isentropic, hence, g(0, p) = G( g,(a, p), P,,(a, p), ~$0, /3)). Differentiating with respect 
to a and setting a = 0, we get A@) = 0, hence, H@) = 0 in this case. 

To establish (4.5) we use the chain rule and Eqs. (4.3), (1.2) to deduce, 
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NOW, in view of (1.7) the flow variables at a = 0 are those obtained from the RP 
solution. The slope of a r--curve is -g, so from (4.1) we get 

do, P> = srP* (4.15) 

Specializing (4.10) to the y-law relation we have 

(yt 1)/2y 
g=g, L > 

i 1 PO 

and the well-known solution of a centered rarefaction wave in this case becomes 

p(0, p> = p,p2y”y+ I), +)J) = c,p(Y-w(Y+ u, 

2 2 
u(0, p) = U[ + - C[ - - ,“I1 (1 +y-w(Y+u)* 

(4.16,) 

Y-1 Y-l 
c(O, P) = u/ + 

Incorporating these expressions in (4.14) we get (4.6,), and (4.7,) is obtained by 
integrating (4.4). This concludes the proof of the theorem. 

Once a(J) = &(O, /?)/a a is known, the other derivatives at the singularity are easily 
determined. Corresponding to (4.10) we let 

P=J@o, PO, P) (4.17) 

be the isentropic curve through a state Qo, po). For a y-law case it reads 
p = pO(p/po) ‘ly. We have 

COROLLARY 4.2. The following are the expressions for aQ(a,P)/aa at the 
singularity a = 0 for the various flow variables, both for a general equation of state 
and a y-law case. Recall that a(/3) = au(0, /3)/aa is given by (4.4). 

(4.18) 

am m 
aa = [G&,, P/Y ~(0, P)) ($1 , + G&,, PI, N4 PI> (,$) ,I P”’ 

+ g,BGp(g,7 P/, ~(0, P)) a@), (4.19) 

WA P> 
aa V2 

+ g,Pc(O, /V2aGa), (4.21) 

(4.22~ 
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Proof: Equation (4.18) is the combination of (4.8) and (4.15). Equation (4.19) is 
just (4.13) if we note (4.15). To establish (4.21) we proceed as in (4.13) and get the 
analogue of (4.19) with G replaced by J. By the definition of the speed of sound 
C * = J,, yielding (4.21) (note that @!, pr) and (~$0, /I), ~(0, /3)) have the same 
entropy). Finally, (4.20,), (4.22,) are derived from the specialized formulae for J, G. 

Remark. Notice that given /I0 E [/I*, 11, the value of a(&), hence, also for all 
aQ(O, &J/&X, depends only on the flow ahead of the characteristic /I = PO, that is, 
data for < < 0 and a@) for & <p < 1. This of course reflects the fact that no sonic 
signal reaches the characteristic from the other side. 

5. TIME DERIVATIVES OF p, u ON THE INTERFACE 

In this section we assume the situation is as displayed in Fig. 3 and compute 
(dp/&)*, (au/at)*. Basically we follow the ideas of van Leer [ 1 l] and obtain these 
values as solutions of two linear equations. In Appendix A we study the connection 
between our approach and that of van Leer. 

Let W > 0 be the (Lagrangian) shock speed and denote by Q, the preshock value 
of Q. Let the (p-u) Hugoniot relation be written in the form 

Since it holds identically we may differentiate along the shock trajectory to get 

$+ Wz 
x 

K(u rP,u+>P+YP+)=O. 

The solutions in the regions adjacent to the shock front are continuously differen- 
tiable up to the front. Hence, the time derivatives of u+ , p+ , p+ may be replaced by 
r-derivatives using (1.2) and the adiabatic nature of the flow along < = const., 

a a a 
xU’=-ayPt’ $P+=-P$M+, a zp+=-g: ;it;%’ 

Similarly, in the post shock region (a/at)(u, p) = (-g~*(3p/dt), -(h/i%)). Now we 
let t -+ 0 and use that 

Also, by (1.7), as t -+ 0 the postshock solution I’(<, t) tends to V* = R(0; V,, V,) 
while W converges to W, = (p* - p,)/(u* - u,). Thus Eq. (5.1) reduces to a linear 
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relation for (&/at)*, (+/at)*, where the coefftcients depend on V*, V,, and 
(8V/a<),. This leads to 

THEOREM 5.1. Suppose that the resolution of the discontinuity at < = 0, t = 0, is 
as displayed in Fig. 3. Then the time derivatives in the direction of the contact discon- 
tinuity (&t/at)*, (LJp/at)*, are determined by a pair of linear equations, 

(5.2) 

(5.3) 

The coeflcients a,., b,, d, depend on V*, V,, (aV/a<),.. The coeficients a,, b,, d, 
depend on V *, V, , (aV/a& and are given by 

at= 1, b, = (g;“>-‘, d, = -(g, gT)“‘a@*), 

where /?* = gT/g, and a@) is the solution of (4.4). 
In the case of a y-law equation of state explicit formulae for a,, b,, d, are 

a, = 42 + A (P* - P,)), 

b,=A(u*-u,)+(g:))‘W,+ W,‘, 

where Wr = (p* - p,)/(u* - ur) and with p2 = (y - l)/(y + l), 

A = -gp* + ,u2pJ’, B = (p* - pJ’ -$A, 

L, = PA% - u*)(YP,B + f) - W,, 

L, = (&,)-‘(P* -P,), L, = 1 + B(p* - p,). 

(5.4) 

(5.5,) 

(5.6,) 

(5.7,) 

(5.8,) 

Proof Equation (5.2) and the remarks concerning the dependence of a,, b,, d, 
follow from the considerations preceding the theorem. 

To establish (5.3), (5.4) we note that the flow in the region t(a, p*) < < < 0 (see 
Fig. 3 and Sect. 4) is continuously differentiable. Using the chain rule to differentiate 
along the tail characteristic p = /?* at a = 0 we get 

amp*) = ap * amp*) ap * amp*) 
aa i 1 at aa +Tiji, aa ’ i 1 (5.9) 
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From Eq. (1.2) we have that (@/a[): = -(au/at)*. Using Eqs. (4.3) and (4.18) the 
last equation yields 

g,p*a(p*) = -g;‘(p-“* (52) * - p*>“’ (g, *, 

which is immediately seen to be equivalent to (5.3), (5.4). As was mentioned earlier 
we discuss in Appendix A the connection betwen (5.3) (5.4) and van Leer’s 
equations. 

Finally, to derive Eqs. (5.5,)-(5.8,) we note that for the y-law relation the (p - u) 
Hugoniot is given by (see [5, Sect. 811) 

I 
1 -/I* 

I 

l/2 

K(u,p,u+,p+,p+)=u-u+-(p-p+) P+(P +P2P+> . 

Carrying out the computations implied by (5.1) and the subsequent considerations 
yields the desired equations. This concludes the proof. 

Remark. Cases other than the one shown in Fig. 3 are dealt with in exactly the 
same way. The result is always a pair of equations of the form (5.2), (5.3), with the 
coefficients suitably changed. For the reader’s convenience we provide the expressions 
needed in these cases in Appendix C. 

The Case of Weak Waves 

In the case of an infinitely weak shock we have V* + V,, W,-+ g, and from Eqs. 
(5.5,)-(5.8,), we get then 

a, = -2, b, = 2g; ‘, 

Similarly, in the case of an infinitely weak rarefaction wave, setting p* = 1 in (5.4) 
and noting (4.5) we get 

a,= 1, b,= g;‘, 

and the two sets of coefficients are seen to be equivalent, thus rendering consistency 
of our equations for “sound waves” (notice that since (5.2), (5.3) represent waves 
propagating in opposite directions, one must substitute r for 1, --u for u, and -r for { 
in (5.3) and in the expressions for the coefficients in order to obtain equality). 

581 55’1 2 
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6. THE LAGRANGIAN SCHEME 

Combining the results of Section 5 with the outline in Section 2 we see that there is 
very little left to complete the description of the Lagrangian scheme. Indeed, the time 
derivative of the flux vector Y( I’) (Eq. (1.2)) is given by 

(notation as in Section 2), and the derivatives in the right-hand side are furnished by 
the results of Section 5 (i.e., (&/at)*, (@/at)*). Thus (the Lagrangian equivalent of) 
Step B of Section 2 is easily implemented (see Appendix C for the coefficients of 
(5.2), (5.3) in all Lagrangian cases). 

Perhaps one final remark is due. When implementing Step D of Section 2, that is, 
updating slopes, we must determine (@/at):+ ,,*, which is, of course, double-valued at 
the contact discontinuity. Using, for simplicity, the notation of Section 5 we get 
(c= 0 is a streamline!) 

(6.2) 

and, similarly, for the left-hand side. 

7. THE EULERIAN SCHEME 

Our starting point here is, again, the discussion at the end of Section 2. Thus, we 
are led again to consider the time evolution of flow variables for the GRP in the 
neighborhood of a jump discontinuity with linear distributions on both sides. Only 
that we are now considering the fixed grid line x = xi+ i,*. Again, the indices (i, n) are 
suppressed and we shall use the notation set up in Section 3, where, however, x 
replaces r and the discontinuity is located at x = 0, t = 0. We realize right away that 
while the Lagrangian wave pattern is always as shown in Fig. 3 (with possible 
exchange of shocks and rarefaction waves) the situation in the Eulerian framework is 
more complicated. Thus, the line x = 0 may be located to the right or to the left of 
both waves or in between, on either side of the contact discontinuity. What is even 
worse, it may be contained in a centered rarefaction wave moving either way (the 
“sonic case”). We shall therefore use the following device. First, we use d{ = p dx to 
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define a “local” auxiliary Lagrangian coordinate so that < = 0 at x = 0. The slopes of 
the initial data at the singularity are then given by 

(7.1) 

Consequently, the problem can be solved locally as a Lagrangian problem, by means 
of the methods of Section 5. In particular, Eqs. (5.2), (5.3) are solved and (au/at)*, 
(@/at)* determined. Next we “identify” the line x = 0 within the Lagrangian 
framework, that is, we let r= r(t) be its image under the local transformation 
(x, t) + (r, t). It is easily verified that l(t) satisfies the ordinary differential equation 

& - = -PUK 0, dt 
((0) = 0. (7.2) 

Indeed, we have x(<(t), t) = 0, hence, by differentiation, u(<(t), t) + (ax/a<) c’(t) = 0 
and ax/at = p-i, by definition, Still we have to determine the value of the right-hand 
side of (7.2) at 0. This is done in view of our basic hypothesis (1.7). Thus, denoting 
U, = lim,,, U(0, t), we have 

Uc, = R(O; U,, U,), (7.3) 

where R is now the solution to the RP in Eulerian coordinates. The corresponding 
value of any particular flow variable Q will be denoted by Q,. (These are the values 
denoted by Q;+,,2 in Sect. 2, see (2.2).) Similarly, the time derivative along x = 0 is 
denoted by (aQ/at),,. This is the derivative we need in the implementation of Step B 
of Section 2. Using (7.2) and displaying explicitly the independent variables, one 
might use the chain rule to obtain 

8Q t 1 - =~Q(x~t,:,~,=~Q(ct,,_,--p,u,$Q(S,t),=,. at () - at (7.4) 

Observe that both derivatives in the right-hand side of (7.4) are evaluated at r = r(t) 
and then t-+ 0. Unfortunately, Eq. (7.4) is not always meaningful. More specifically, 
in the sonic case the l derivative in the right-hand side generally blows up as the 
singularity is approached. In this case we shall find it necessary to use characteristic 
coordinates and modify (7.4) accordingly. 

Consider Fig. 3 again, where now < is the local Lagrangian coordinate. We number 
from k = 1 to 6 the zones determined by the waves, including the waves themselves, 
apart from the contact discontinuity which is always the curve < = 0. In what follows 
we assume that the wave configuration is as shown in Fig. 3 and let W, = p;’ Wr + u, 
be the Eulerian shock speed (W, = (p* - p,)/(u* - u,.)). Recall that U* is the 
solution of the RP along the contact discontinuity. We may now classify the various 
possibilities for the location of r = r(t). 
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A. The Nonsonic Case. Here Eq. (7.4) is meaningful where, with r(t) located in 
zone k: 

(a) k=l ifu,-c,>O,thenU,=U,. 

(b) k=3 ifu*-cT<O<u*,then U,=U:. 

(c) k=4ifu*<O<W,,thenU,=U,?. 

(d) k = 6 if W, < 0, then U, = U,. 

B. The Sonic Case. Here Eq. (7.4) is meaningless. The curve <= r(t) is 
contained in a rarefaction fan and by (7.3) U, is determined as the value carried by 
the sonic line. In the case shown in Fig. 3 we have 

k=2 if u,-c,<O<u*-c,*. 

Observe that the classification is made solely on the basis of the Riemann solver 
R(.; U,, U,). We shall now discuss the two cases separately. 

A. The Nonsonic Case 

Let the “zone index” be k as above. For all four possibilities we need to interpret 
the derivatives in the right-hand side of (7.4). Unlike the Lagrangian case (Sect. 6) 
where essentially we needed time derivatives for u, p only (and (6.2)), it follows from 
(1.1) that in the Eulerian case we need the derivatives for all basic variables, that is, 
p, p, u. Let us examine the various possibilities. 

(a) k= 1. In (7.4) we use, in accordance with (1.2), 

(as given by (7.1)), 

(7.5) 

Since p is not explicitly included as a component of V, the equality (a/at) p(& t),,. = 
c~(c?/at) p(<, t),=, may be used. 

(b) k = 6. This case is completely analogous to the case k = 1, with I replaced 
by r. 

(c) The cases k = 3,4. Here the time derivatives are easy to compute. Indeed if 
Q = u or p then 

(7.6) 

and for p we use (6.2). Thus, the results of Section 5 are applicable here. Consider 
now the < derivative in (7.4). Using the notation of Table I (Sect. 3), these are 
precisely (aQ/ac),? (k = 3) or (aQ/at)$ (k = 4). In view of (1.2), this is easy for 
Q = u, p. Indeed, 
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(7.7) 

with analogous formulae for k = 4. These derivatives, therefore, follow from the 
results of Section 5. It remains to compute (+/J<),*, (+/at),*. We shall do that in 
Theorem 7.1, in which we summarize the results for the nonsonic cases. 

THEOREM 7.1 (Nonsonic case). Let the line x = xi+ ,,2 be nonsonic and suppose 
that the configuration is as shown in Fig. 3 (where xi+ ,,* = 0). Then in order to 
implement Step B of Section 2 for the Eulerian case one uses Eq. (7.4) supplemented 
as follows: 

(i) If k = 1 or k = 6, Eqs. (7.5) are used (r for I when k = 6). 

(ii) If k = 3,4, the interface derivatives (&/at)*, (apI&)* are evaluated as in 
Section 5. Then Eqs. (7.6), (6.2), (7.7) are used for all but the < derivatives of p, 
which are computed as follows: Let ap(O, /3)/aa be given by (4.21) and /?* = g,+/g, at 
the tail of rarefaction. Then, 

3P * i 1 2, 
=@")-I/2 dP(iap*) 

+ (giY(cw* ($) *, 

ap * 
i 1 .z r 

= 3(p:yw,* ~~~‘-(3(cI*)*w;'+@r*)2w;))(~) * 

-(3 +dT2)(P,*)*w;' ($j 
I 

+3@,*)*w;* ($) +W)'p;' j$) 9 
I r 

(7.X) 

(7.9) 

where W, = (p* - p,.)/(u* - u,.), g, = prc,. 

Proof: In view of the foregoing remarks we need to prove only (7.8), (7.9). To 
establish (7.8) we proceed as in (5.9) to obtain 

aP(o,P*) 
aa 

= (4c-2 (a$ * sty*) + (3 * ac(;afi*). 
I 

To prove (7.9) we use a procedure similar to (5.1). Specifically, using a well- 
known shock relation [5, Eq. (59.05)] and the same notation as in (5.1) we have 
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The preshock time derivatives are transformed into spatial derivatives and the 
postshock derivatives @/a<, au/at are transformed into time derivatives as indicated 
in the paragraph following (5.1). We note that ap/at = c~‘(~p/i2). Solving the last 
equation for ap/a<, using that W&I;’ - @,*))I) = U* - U, and letting t+ 0 we get 
(7.9). This concludes the proof of the theorem. 

Theorem 7.1 allows one to use Eq. (7.4) in the nonsonic cases. In Appendix D we 
give the analogues of (7.8), (7.9) for the cases that a rarefaction wave is travelling to 
the right or a shock is travelling to the left. 

B. The Sonic Case 

Here we use the same “local” Lagrangian coordinates as before, leading to the 
trajectory (7.2) as the image of x = 0, with U, as given by (7.3). However, Eq. (7.4) 
is replaced as follows: 

We assume that the configuration is as shown in Fig. 3, hence k = 2 in our case. 
Let (a, p) be the characteristic coordinates as defined in Section 4. The line x = 0 is 
sonic, namely, u,, = cO. Let & = g,/g,, where g, = p,, c0 = p,, uO. By (4.1) the charac- 
teristic /I =/I0 coincides with x = 0 for the solution of the “associated Riemann 
problem.” Let (a(t), /3(t)) be the representation of x = 0, so that (a(O), p(0)) = (0, &,). 
In general, this curve is not tangent to the characteristic /I =&, in the (a,p) plane, 
that is, p’(0) # 0, even though they are tangent in the (<, t) plane (you might think of 
a curve r(A), e(1) in polar coordinates, with 8’(O) # 0). Instead of Eq. (7.4) we shall 
use, in this case, 

aQ t-1 at 0 
= $ Q(x, t),=o = & Q(O, Po) a’(O) + -$ QP, Po) . P’(O)- (7.11) 

I=0 

As in Section 4, all quantities are smooth functions of (cz, /3) up to the singularity 
a = 0. The value of /?, (when k = 2) is determined by 

UP, PO> = c(O, PO>. (7.12) 

Thus PO, as well as all the functions Q(O,P), are determined by the solution to the 
“associated Riemann problem.” For a y-law relation these functions are given in 
(4.16,), whereas from (7.12) we infer that 

po= [ ;‘; (~+~j](“‘)“y-‘i (k=2). (7.13,) 

In view of Theorem 4.1 and Corollary 4.2 the only missing elements in (7.11) are 
a’(O), /3’(O). They are given, along with a summary of the previous remarks, in 
Theorem 7.2. 

THEOREM 7.2 (Sonic case). Let the line x = xi+ ,,2 be sonic and contained in a 
r--rarefaction fan, as shown in Fig. 3 (with xi+,,* = 0). Then in order to implement 
Steps A-C of Section 2 the following steps are taken: 
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(a) The solution of the “associated Riemann problem” in the expansion wave is 
determined ((4.16,)for a y-law). 

(b) The characteristic that coincides with the grid line is singled out in terms of 
its slope /3, (in the “local” Lagrangian representation), using (7.12) ((7.13 J for a y- 
law). 

(c) The initial values U,, in (7.3) are determined as U(0, &) (corresponding to 

u;+ l/2 in (2.2)). 

(d) The time derivatives (@/at), (corresponding to (aU/at)l+ 1,2 in Step B) are 
evaluated by (7.1 l), where (a/a/?) Q(0, /3,J are derived from the Riemann solution; 
(a/&) Q(0, B,) are given by Corollary 4.2 and a’(O), /3’(O) are given by 

a’(0) = -g,p;‘2, (7.14) 

(e) For theflux vector Q(U) of(l.1) we have 

(7.15) 

(7.16) 

so that from (7.1 l), 

aw) 
l 1 at o 

= g @(O, p,> * a’(0). 

(See remarks in Appendix D concerning the sonic case for k = 5.) 

Proof: We need only prove (7.14~(7.16). Differentiating the second equation in 
(4.3) with respect to t along a(t), P(t) we get 

1 =-&a’(r) +$/I’(t)= -g;‘/?(t))“‘a’(t) + O(a(t)). 

Letting t -+ 0, so that (a(t), P(t)) - (0, /I,) we obtain (7.14). 
Equation (7.15) is considerably more difficult to prove. We postpone the proof to 

Appendix B. To prove (7.16) we note that the isentropic P relations hold along the 
degenerate a = 0 characteristic, so that 

Combining these relations with (7.12) yields (7.16). 
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Remarks. (1) Note that in view of (7.17), (2.3), and (2.4) the full equation (7.11) 
(hence, /3’(O)) is needed only if slopes are updated by (2.5), that is, “interface 
differencing.” If another method is used in Step D (e.g., “average differencing,” see 
[2]) then p’(O) is immaterial. 

(2) Equation (7.15) expresses the “curvature” of the characteristic /I = p,, that 
is, its deviation from a straight line along which u - c vanishes identically. 

Summary 

The Eulerian scheme has been completely described in Theorems 7.1 and 7.2. 
Observe that the “local” Lagrangian coordinates were used only to simplify the 
characteristic picture. Starting from constant Eulerian slopes on both sides of xi+ ,,?, 
one defines new slopes as in (7.1), then uses either (7.4) or (7.11) to evaluate the 
Eulerian time derivatives. As a matter of fact, it follows from our analysis that these 
time derivatives at xi+ ,,* depend only on the limiting vafues lim,,,+, ,** (@/ax). 
Thus, in principle, the method can be extended to the case that the slope in cell i is 
nonconstant. 

8. NUMERICAL EXAMPLES 

We have chosen three one-dimensional examples to illustrate various aspects of our 
schemes. All three of them have been discussed in the literature recently and served 
as test problems in the comparison and assessment of a variety of first- and second- 
order schemes. Before presenting the results let us refer briefly to the question of 
monotonicity algorithms. As was observed in [ 2,3, 111, such algorithms are crucial 
in the development of upstream-centered second-order schemes. On the other hand, 
they are still accessory techniques, largely independent of the particular difference 
scheme used. A basic requirement of these algorithms is, of course, that they serve 
well and adjust automatically to a large variety of cases, regardless of the particular 
nature of any one case. Our approach was, therefore, to minimize the role played by 
the monotonicity algorithms as much as possible, admittedly at the expense of 
possibly missing the best result sometimes in a given case (this is illustrated in 
example (b) below). Thus, we updated slopes as in Step D, Section 2 (i.e., updating 
values at cell boundaries and then taking differences). We then used the basic 
alforithm of van Leer (see [ 11, Fig. 3]), which can be summarized by the following 
principles: (A) If the cell average is an extremum, the slope is set equal to zero. (B) 
The slope is reduced so that cell-boundary values do not go beyond the cell averages 
in the neighboring cells. 

All three examples shown below were worked out using solely this algorithm. 

(a) Our first example is the shock-tube problem used by Sod [lo]. The tube 
extends from x = 0 to x = 100 and is divided into 100 equal cells. The gas is initially 
at rest (U = 0) with p = 1, p = 1 for 0 <x < 50, p = 0.1, p = 0.125 for 50 < x < 100. 
Numerical and exact solutions are shown at t = 15, when the shock wave moving to 
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1 b. 
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I. 
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+/ROmmG m RT T= 15.000 I" 

FIG. 4. Results for Sod’s problem, using the Lagrangian scheme (see Ex. (a), Sect. 8). 

the right has approximately reached x = 75. The solid lines represent the exact 
solutions, whereas the dots represent cell averages in the numerical solution. The 
quantities shown are velocity, pressure, density, and p/p’, which is a function of 
entropy (here y= 1.4). Figure 4 shows the results of the Lagrangian scheme 
(Section 6) and Fig. 5 shows the results of the Eulerian scheme (Section 7). 

(b) The second example was used by Colella and Woodward in [3] in order to 
test their piecewise-parabolic method and the associated monotonicity algorithms. It 
is a Riemann problem which involves a very strong nearly stationary shock wave. 
The region of integration is again 0 <x < 100 and is divided into 100 equal cells. 
Initially, p=!, p=4, and u=-0.3 for O<x<20 and p=10m6, p=l, and 
u = -1.3 for 20 < x & 100. Transmitting (influx) boundary conditions are applied at 
the boundaries. The gas is ideal with y = 5, so that the jump in density 
((Y + IMY - 1)) re P resents the limiting value for a jump across a shock. The initial 
data are so adjusted that the exact solution consists of a single shock moving to the 
right at a (Eulerian) speed of approximately 0.033. Figure 6 displays the results of 
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FIG. 5. Results for Sod’s problem, using the Eulerian scheme (see Ex. (a), Sect. 8). 

the Eulerian scheme at t = 2000, after 4000 cycles of a constant At = 0.5. The shock 
has moved by then about 66 cells. Again the exact and numerical solution are 
represented, respectively, by the solid lines and dots. For the density profile we get 
the same “wavelike” behavior as pointed out in [3]. However, the velocity and 
pressure profiles are quite sharp and also the deviation in entropy is quite moderate. 
Of course, the profiles can be further smoothed out by enhancing the dissipative 
mechanism, or, in this case, flattening further the slopes of flow quantities in cells. 
This is nicely demonstrated in Fig. 7, in which all slopes were set equal to zero, thus 
obtaining the first-order Godunov-Eulerian scheme (under otherwise identical terms). 

(c) Our final example was again proposed by Colella and Woodward in [4]. 
Unlike the previous two examples, it involves multiple interactions of waves of all 
kinds. We refer the reader to [4] for a detailed discussion of the various interactions 
encountered there (after the main feature of the flow they refer to the problem as 
“two interacting blast waves”). The initial condition consists of three constant states 
at rest (u = 0) between rigid (reflecting) walls located at x = 0 and x = 100. The 
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~\lELCKITYx RT T= 2000 .o 
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FIG. 6. Numerical and exact solution for a very strong almost stationary shock (see Ex. (b), 
Sect. 8), using the Eulerian scheme. 

density is everywhere unity, while the pressure is 1000 for 0 < x < 10 and 100 for 
90 < x < 100, while it is only 0.01 in 10 < x < 90. The gas is ideal with y = 1.4. 
Following [4], we use the velocity and density profiles at t = 3.8 as a basis for 
comparison. Figure 8 displays our numerical results using the Eulerian scheme. In 
Fig. 8a we used 200 equal cells, while in Fig. 8b we used 800 equal cells. Comparing 
our results with the most accurate run in [4] (using 2400 cells) we see that the 
solution in Fig. 8b is quite accurate, except for some smearing of contact discon- 
tinuities. We note that our solution is very close to the MUSCL solution (using 1200 
cells), as displayed in [4]. 

APPENDIX A: RELATION TO VAN LEER'S EQUATION 
FOR A CENTERED RAREFACTION WAVE 

At the end of Section 5 we considered the case of an infinitely weak rarefaction 
wave, that is, /3* = 1. In a region of smooth flow this corresponds to an error of the 
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FIG. 7. Numerical and exact solution for a very strong almost stationary shock (see Ex. (b), 
Sect. 8), using Godunov’s first-order Eulerian scheme. 

order O(dx) in the coefficients of (5.3) (specifically d,, see (5.4)). We now go one 
step further and study the approximation of d, to within O(dx’). In other words, we 
expand d, up to linear terms in /3* - 1 = (g: - g/)/g,. We shall do that for the y-law 
relation, where a(P) is given by (4.7,). So, omitting higher order terms and using 
equality to mean “within 0(,4x2>,’ we get 

+ g;l(y + 1>-’ [cl($),-q($jl]. g’;g’. (A.l) 

Recall that g = (ypp)“‘, hence, 
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FIG. 8. Numerical results for two interacting blast waves (Ex. (c), Sect. 8). using the Eulerian 
scheme, (a) with 200 cells, (b) with 800 cells. 

so that 

Y+l -- 
2 

Let dp=p*-p,, Ap=p,*--p,, Ag=g,?-g,, and set W=i(gl*+g,). Since 
p, Ap = yp, Ap we have 

Since W = g, + ;Ag, we have, again within O(Ax2), 

4 AP AS 1 

d(Y + 1) = - = -p’ 2w 2WP, t 1 
z=-- . 

P 
64.3) 
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Inserting (A.2), (A.3) into (A.l) yields 

Within the required order of accuracy W2 = g, g,?, so from (5.4) we finally get 

This is exactly the coeflicient used by van Leer [ 11, Eq. (6.5)]. 

APPENDIX B: THE SONIC CASE 

In this appendix we prove Eq. (7.15) and then discuss briefly the equivalents of 
Eqs. (7.1 l), (7.12) (7.13,) for a T’-rarefaction wave (k = 5). 

Proof of (7.15). Since a = const., /I = const. are F, r- characteristics, respec- 
tively, we have 

P.1) 

(B.2) 

Using (4.3) in (B.l) and dropping all terms which are O(a’), we obtain 

P"" + 20~E(O,P)=-g(O,P)[-gl'p-~'* + 2aq(O,/3)]+ g,(O,/Vg;'P-"*a 

= P"* + g,(O, P) g.7 'P-"*a - &MO, Pb, 

where (4.15) was used. Rearranging the last equation we get 

E(O, P) = ; g&T P> g, ‘P- 1/Z - &Pm P>* (B-3) 

Similarly, using (4.3) in (B.2) and dropping all terms which are O(a’) yields 

fd -"* + cq(0,/3)a2 = g(0,P)[4g;'aP-3'2 + qJO,P)a*] 

+ $g,(O,P) g;'a2F3'*, 

which reduces to 

Equations (B.3), (B.4) are a pair of ordinary differential equations for ~(0, P), ~(0, /I>. 
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Differentiating (B.3) with respect to /? and eliminating ~(0, p) we get 

P.5) 

Our choice of the characteristic p= 1 was such (see the paragraph following (4.2)) 
that <(a, 1) = a, hence, 

&(O, 1) = 0, (B.6) 

which constitutes the initial condition needed in (B.5). Note that g,(O,p) is given by 
(4.19), (4.20,). H aving solved for ~(0, /?), we determine ~(0, ,8) from (B.3). 

To proceed with the proof of (7.15), let a(t), /3(t) be the characteristic represen- 
tation of x = 0, and let l(t) be its representation by (7.2). Differentiating along r(t) 
we get 

z=-$a'(l)+$P(r)= do"* + 2ae(a,p))a'(t)+ {ap-"'/3'(t)+ O(a*). 

On the other hand, by (7.2) 

- = -m(a(O, P(O) dt 

= -p~(O, P,) - $- @u)(O, PO) a(t) - $ @uW, &NV) - Pd + O(f'>. 

From (7.16) we infer that (a/@) pu(0, &) = 0. Equating zero order terms in the last 
two expressions and using (7.12) we recover (7.14). For first order terms we have 

a'(O)/?;"*p'(O) + /?:'"a"(O) 

= -2a'(O)*@, PO) - & @u)(O, PO> a'(O). (B.7) 

Similarly, we have from (4.3) that 

l=$= (-g;‘p-l’* + 2ay(a,p))a'(t)+ fg;'ap-3'2/3'(t)+ O(a') 

= g;'{-jl;"*ar(0) 

whence, 

+ [C&"*/?'(O) + 2g,a'(O) r(O,P,)) a'(O) -P~"'a"(O)l~l + O(f'>, 

a'(0)/?~3'2/?'(0)-/l~1'2a"(O)= -2g,a'(O)*rj(O,&). Q3.8) 
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Multiplying (B.8) by PO, adding to (B.7), and taking (B.3) into account, we get 

2P,“‘P’(O> = -g; ‘a’(O) rco”* & do> PO> - PO & @uW9 PO> 

and, finally, using (7.14), 

which is (7.15). 

Remarks on the Sonic Case for a P Rarefaction 

We define characteristic coordinates (a, /I) as in Section 4, except that now 
a = const., p = const. are r-, I-+ curves, respectively. The coordinate /I is the 
normalized slope of the Tf characteristics fanning out from the origin. Instead of 
(7.12), the sonic line is now given by ~(0, &) = -c(O,p,). If we reflect (u, <, a) + 
(-U, -<, -a), (p, p, g, p) + (p, p, g, /3) and change r to 1, we obtain precisely the 
k = 2 case. Thus, instead of (7.13,) we have 

and instead of (7.14), (7.15) we get 

a’(O) = g,PA’*, (B. 10) 

(B.ll) 

It is equally easy to see how the equations in Corollary 4.2 change under the above 
transformations. Particularly, the expression (4.7$ transforms into 

+ g,(3;p 1) 1-q ($),+q ($),l . (j3(3y-*)‘2(y+1) - 1). (B.12,) 

APPENDIX C : ADDITIONAL DETAILS OF THE LAGRANGIAN SCHEME 

We provide here the coefficients in Eqs. (5.2), (5.3) for the case that the waves are 
not as shown in Fig. 3. 
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(i) The wave travelling to the left is a shock. Instead of Eq. (5.4) we now have, 
using a y-law relation, 

a,= 2 +A@* -P,>, (Cl;3 

b, = -[A&* - u,) + (gJF)-*w, + w,-‘1, (C.2,) 

d,=L, ($j,-Lp ($j[% ($j, (C.3,) 

where I+‘, = (p* - pJ/(u* - uJ, 

A =-&I* +p*~+~‘, B = (p* -p,)-’ -p*A, 

4, = P@* - UYP,B + 4) + W, 3 (C.4,) 

L, = 1 + B(P* - P,), L, = Rw(P” - P,>. 

(ii) The wave travelling to the right is a rarefaction. Instead of Eqs. 
(5.5,)-(5.8,), we now have 

a, = -1, b,= (g,*>-‘, 4 = -(g, g,V”‘4P*>, (C.5) 

where /3* = gp/g, and a(P) is now given by (B. 12,) (for a y-law relation). 
With the coefficients of (5.2), (5.3) given in all cases, the Lagrangian scheme 

proceeds as described in Section 6. 

APPENDIX D: ADDITIONAL DETAILS OF THE EULERIAN SCHEME 

The nonsonic case was fully described in Section 7. We give here the analogues of 
Eqs. (7.8), (7.9) for the case that the waves are not as shown in Fig. 3. 

(i) The wave travelling to the left is a shock. Instead of Eq. (7.8) we obtain 

+3@,*)2w,2 ($j + @ml>’ ($j,. 
I 

(D.1) 

have (ii) Th 
e wave travelling to the right is a rarefaction. Instead of Eq. (7.9) we 

- (gJy(c:)-’ (gj *. CD.21 
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In (D.l), (D.2) we take W, = (p* - pJ(u* - q), P* = gP/g,, and WA P>/aa is 
obtained in (D.2) from (4.21) or (4.22,) by reflecting (a, <, u) + (-a, -r, -u), 
(p, p, g, ,8) + (p, p, g,/?), changing I to r and, for the y-law, using (B.12,). 
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